Study program:	Electrical and computer engineering – Module: Computer engineering	
Type and level of studies:	Undergraduate academic studies (first level of studies)	
Course unit:	Parallel Computer Systems	
Teacher in charge:	Uroš Pešović, teaching assistant Dejan Vujičić	
Language of instruction:	English	
ECTS:	5	
Prerequisites:	-	
Semester:	Winter	

Course unit objective

Understanding of limitations with parallel computing, instruction level parallelism and loop level parallelism. Understanding of possibilities of detection and implementation of hardware parallelism during program execution.

Learning outcomes of Course unit

Deep understanding of superscalar processors and VLIW processors, compiler optimizations and parallelism models.

Course unit contents

Theoretical classes

- Instruction level parallelism.
- Data dependencies and graphs.
- Trace scheduling.
- Speculative execution.
- Loop parallelism.
- Graphs of loop data dependencies.
- Software pipeline.
- Vector supercomputers, very large instruction word machines, and superscalar processors.
- Multicore processors.
- Hyperthreading.

Practical classes

Usage of simulators.

•	• .			
•	111	\mathbf{pre}) TT	ire

1.	Zoran Jovanović, Instruction Level Parallelism, ATC Avangarda, Belgrade, 2006
2.	Roman Trobec, Marian Vajteršic, Peter Zinterhof, Parallel Computing – Numerics, Applications and Trends, Springer – Verlag, 2009

Number	oi	active	te	acnıng	nours

Lectures: 2	Practice: 2	Other forms of classes:	Other classes	Independent work: Case study:
-------------	-------------	-------------------------	---------------	----------------------------------

Teaching methods:

Lectures, tutorials, projects, demonstrations

Examination methods (maximum 100 points)

Exam prerequisites	No. of points:	Final exam	No. of points:
Student's activity during lectures		oral examination	30
Practical classes		written examination	40
Colloquiums			
Seminars/homework	30		

Grading system

Grade	No. of points:	Description
10	91-100	Excellent
9	81-90	Exceptionally good
8	71-80	Very good
7	61-70	Good
6	51-60	Passing
5	less than 50	Failing